

ED-602

M.Sc. 3rd Semester Examination, March-April 2021

PHYSICS

Paper - II

Atomic and Molecular Physics

Time : Three Hours] [Maximum Marks : 80

Note : Answer **all** questions. The figures in the righthand margin indicate marks.

Unit-I

1.	(<i>a</i>)	(<i>i</i>)	Explain the effect of spin-orbit interaction on the structure of a spectral line. Discuss the fine structure of $H\alpha$ line.	10
		(ii)	An electron have quantum number $l = 2$, determine the possible values of the components of angular momentum along a specified direction.	6
			OR	
	(<i>b</i>)	(<i>i</i>)	Explain penetrating and non-penetrating orbits for a single valence electron.	12

DRG_65(3)

(Turn Over)

(2)

(ii)	Calculate the spin-orbit interaction	
	splitting of a level corresponding to	
	n = 2 and $l = 1$ of hydrogen atom.	4

Unit-II

2.	<i>(a)</i>	<i>(i)</i>	State, explain and deduce Pauli's	
			principle. What is its physical	
			significance ?	8
		(ii)	Explain two electron systems.	8

OR

(b)	What is	L-S and J-J	coupling ?	Deduce	
	the intera	ction energy	/ for it.		16

Unit-III

3.	(a) Det	fine norm	nal and an	iomalous	Zeeman	
	effe	ect. Deriv	ve g factor	r and in	teraction	
	ene	ergy for a	nomalous Z	eeman ef	fect with	
	suit	table split	ting diagra	m.	10	6

OR

(<i>b</i>)	(<i>i</i>)	Explain Paschen-Back effect and spin-orbit correction for it.	10
	(ii)	Compute the Zeeman pattern	
		components for ${}^2D_{5/2} - {}^2P_{3/2}$	
		transition.	6

DRG_65_(3)

(Continued)

(3)

Unit-IV

4.	<i>(a)</i>	Explain rotational spectra of diatomic	
		molecule. Deduce rotational energy of it	
		with rotational energy level diagram.	16

OR

(<i>b</i>) (<i>i</i>)	Explain	diatomic	molecule	as
	'symmetric	top'. Ded	luce express	ion
	for the rot	ational ene	rgy levels o	fa
	symmetric	top molec	ules.	

(*ii*) The wave numbers of the lines in a band are given by v = 1000 (2n - 1) for *n* positive and by v = -1000 (2n + 1) for *n* negative. Calculate the moment of inertia of the emitter molecule of the spectrum.

Unit-V

5.	(<i>a</i>)		Derive expression for vibrational frequency and force constant of anharmonic oscillator. Explain vibrational Raman Spectra.	10 6
			OR	
	(<i>b</i>)	(<i>i</i>)	Explain energy level diagram of a diatomic molecule as anharmonic oscillator.	14
		(ii)	With exciting line 2536 Å a Raman line for a sample is observed at 2612 Å. Calculate the Raman shift in cm^{-1} .	2

DRG_65(3)

220

12

4